Prices of anarchy of selfish 2D bin packing games

نویسندگان

  • Cristina G. Fernandes
  • Carlos Eduardo Ferreira
  • Flávio Keidi Miyazawa
  • Yoshiko Wakabayashi
چکیده

We consider a game-theoretical problem called selfish 2-dimensional bin packing game, a generalization of the 1-dimensional case already treated in the literature. In this game, the items to be packed are rectangles, and the bins are unit squares. The game starts with a set of items arbitrarily packed in bins. The cost of an item is defined as the ratio between its area and the total occupied area of the respective bin. Each item is a selfish player that wants to minimize its cost. A migration of an item to another bin is allowed only when its cost is decreased. We show that this game always converges to a Nash equilibrium (a stable packing where no single item can decrease its cost by migrating to another bin). We show that the pure price of anarchy of this game is unbounded, so we address the particular case where all items are squares. We show that the pure price of anarchy of the selfish square packing game is at least 2.3634 and at most 2.6875. We also present analogous results for the strong Nash equilibrium (a stable packing where no nonempty set of items can simultaneously migrate to another common bin and decrease the cost of each item in the set). We show that the strong price of anarchy when all items are squares is at least 2.0747 and at most 2.3605.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selfish bin coloring

We introduce a new game, the so-called bin coloring game, in which selfish players control colored items and each player aims at packing its item into a bin with as few different colors as possible. We establish the existence of Nash and strong as well as weakly and strictly Pareto optimal equilibria in these games in the cases of capacitated and uncapacitated bins. For both kinds of games we d...

متن کامل

On Colorful Bin Packing Games

We consider colorful bin packing games in which selfish players control a set of items which are to be packed into a minimum number of unit capacity bins. Each item has one of m ≥ 2 colors and cannot be packed next to an item of the same color. All bins have the same unitary cost which is shared among the items it contains, so that players are interested in selecting a bin of minimum shared cos...

متن کامل

Selfish Routing and Path Coloring in All-Optical Networks

We study routing and path coloring problems in all-optical networks as non-cooperative games. We especially focus on oblivious payment functions, that is, functions that charge a player according to her own strategy only. We first strengthen a known relation between such games and online routing and path coloring. In particular, we show that the price of anarchy of such games is lower-bounded b...

متن کامل

A tight lower bound for an online hypercube packing problem and bounds for prices of anarchy of a related game

We prove a tight lower bound on the asymptotic performance ratio ρ of the bounded space online d-hypercube bin packing problem, solving an open question raised in 2005. In the classic d-hypercube bin packing problem, we are given a sequence of d-dimensional hypercubes and we have an unlimited number of bins, each of which is a d-dimensional unit hypercube. The goal is to pack (orthogonally) the...

متن کامل

Generalized selfish bin packing

Standard bin packing is the problem of partitioning a set of items with positive sizes no larger than 1 into a minimum number of subsets (called bins) each having a total size of at most 1. In bin packing games, an item has a positive weight, and given a valid packing or partition of the items, each item has a cost or a payoff associated with it. We study a class of bin packing games where the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.07882  شماره 

صفحات  -

تاریخ انتشار 2017